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1 Mathematical Tools
This year, we’ve added differential equations to our math toolkit in Economics. Luckily for us,
those we are dealing with are rather simple to solve.

1.1 Notation
• ẏ: Denotes us the partial derivative of y relative to time.

• yx: Denotes the partial derivative of y relative to x.

• ŷ = ẏ
y : Denotes the growth rate of y relative to time.

1.2 Differential equations
A differential equation is simply an equation that involves a derivative. To some extent, we’ve
already dealt with them in earlier Calculus courses when we did implicit differentiation. An ex-
ample would be 5y(t) − 2y′(t) + 4 = 7 where we call t the independent variable and y(t) the
dependent variable. As opposed to regular equations, the solution of a differential equation is a
function y(t) of the independent variable and not a specific value.

Autonomous differential equation: A differential equation where the independent variable
only enters the equation through the dependent variable. The example above is autonomous while
5y(t)− 2′y(t) + 4t = 7 is not.

Generally, differential equations arise when we model real-life phenomena where the rate of
change (i.e. the derivative) of some variable is in some way affected by the current level of
the variable. They are particularly useful in Economics since once we solve them, we get a func-
tion that describes for us the value of a variable of our model at any point in time.

1.3 Solving Differential Equations
There are two ways to solve differential equations: analytically meaning that we use Calculus
to find the function that fits the equation or qualitatively by drawing a phase diagram that
represents the equation.

1.3.1 Analytically

In this course we will only be analytically solving first-order differential equations (meaning
that the highest degree derivatives we deal with are first degree). These equations have a general
form given by:

ẏ(t) + u(t)y(t) = w(t)

These equations can be either homogeneous (meaning the right-hand side (from now on abbre-
viated RHS) is 0) or non-homogeneous (meaning the RHS is non-zero). While the notes only
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consider the case where u(t) and w(t) are constants, here is the derivation of the general solution
for the more general case.

Homogeneous case: ẏ(t) + u(t)y(t) = 0. Since ẏ(t) is just the derivative of y with respect
to time, it can be written as dy(t)

dt . Then, by bringing u(t)y(t) to the RHS we get:

dy(t)

dt
= −u(t)

Since dt represents a very small change in time, you can multiply both sides by it to get:

dy(t) = −u(t)y(t)dt

We then divide both sides by y(t) and integrate both sides to get:∫
1

y(t)
dy(t) =

∫
−u(t)dt

Since the integral of 1
x is simply ln(x), we get:

ln(y(t)) + c1 = −
∫
u(t)dt

Exponentiating both sides yields:
y(t) + ec1 = e−

∫
u(t)dt

And since ec1 is just some constant C1, we have that what we call the general solution of the
equation is given by:

y(t) = C1e
−

∫
u(t)dt

In the case where u(t) is just some constant u, we have that −
∫
u(t)dt = −

∫
udt = −ut + c,

meaning that the general solution is given by:

y(t) = C1e
−ut+c = Ce−ut

Where ec is multipled by the previous constant to give a new one.

Non-Homogeneous case: ẏ(t) + uy(t) = w. When the equation is non-homogeneous, the
solution is given by the sum of the complementary solution and the particular solution.

• Complementary solution: Given by the general solution of the homogeneous case
(y(t) = Ce−ut)

• Particular solution: Given by any function that solves the complete equation. We consider
the case where y(t) = k where k is a constant. Then, we get that ẏ = 0 and plugging into
the equation gives us:

0 + uk = w ⇐⇒ k =
w

u
=⇒ y(t) =

w

u

The general solution is thus:
y(t) = Ce−ut +

w

u

Remark: In the case where u = 0, we can just apply the homogeneous case by noticing ẏ =
w ⇐⇒ ẏ − w = 0

The only thing left is to determine the value of C. It is given by using an initial condition
(ex: y(0) = 10) and solving for C. In the example, y(0) = Ce−u0 + w

u =⇒ C = y(0)− w
u
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1.3.2 Qualitatively

Solving differential equations can also be done qualitatively in cases where it is hard for us to get
an analytical answer. This process is done by drawing a graph that relates the level of our variable
to its rate of change (a phase diagram). Once the graph is drawn, we find the steady state
(when the level of our variable is not changing) by setting the rate of change equal to 0 and solving
for the level. Once that’s done, we draw arrows around the steady state to indicate how the level
of the variable varies if it is changed from its steady state.

For example, let’s consider the following differential equation: ẏ(t) = ay(t)−b where both a, b > 0.
To find the steady state, we solve ẏ(t) = 0 ⇐⇒ y∗ = b

a and then draw the following diagram:

Figure 1: Phase diagram of the equation

Since the slope of ẏ is positive, if we are above the steady state level, y will continue to increase
and vice versa, implying that any shock will lead the system to never reach the steady system again.

It is also possible for a system to have multiple steady states, for example in the case of
the differential equation ẏ(t) = y(t)− (y(t))2. Setting ˙y(t) = 0 gives us two steady states (y1∗ = 0
and y2∗ = 1) and the following phase diagram:

Figure 2: Phase diagram of the equation
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1.4 Economic Applications
What follows is an example of an application of differential equations to a model of supply and
demand that takes into account the process of change (seeing that markets are not always at equi-
librium).

The Model: Here are the assumptions of the model:

• Qd = a− bP : We have a downward sloping, linear demand function.

• Qs = cP : We have an upward sloping, linear supply function.

• Ṗ = λ(Qd(t) − Qs(t)): The rate of change of the price of the good will scale by a constant
factor λ multiplied by the difference between demand and supply (meaning that if demand
is higher than supply, the price will increase).

Using these assumptions, we can deduce the following equations:

Ṗ (t) = λ(Qd(t)−Qs(t)) = λ(a− bP (t)− cP (t)) = λa− λ(b+ c)P (t)

Which is a more complicated version of the non-homogeneous FODE we saw earlier:

Ṗ (t) + λ(b+ c)︸ ︷︷ ︸
u

P (t) = λa︸︷︷︸
w

Letting µ := −λ(b+ c) and solving analytically gives us:

P (t) = [P (0)− a

b+ c
]e−λ(b+c)t +

a

b+ c
=⇒ P (t) = [P (0)− P ∗]eµt + P ∗

P (t) = [P (0)− P ∗]eµt︸ ︷︷ ︸
complimentary

+ P ∗︸︷︷︸
particular

Here, the particular solution gives us what we call intertemporal equilibrium price or the
steady state price which happens to coincide with the solution to the static model. On the other
hand, the complementary solution is a measure of deviation from the intertemporal equilibrium
price.

We can now use what we’ve derived from the assumptions of our model to see what it predicts in
different cases. The figure on the left plots how P (t) would vary across time for different values
of µ (M). For example, when it is negative as we initially posited, the gap between P (t) and the
equilibrium level will decrease with time. The figure on the right shows how P (t) would change
over time for different initial values of P (0) when µ is positive.

Figure 3: Price variation across time

The parameter µ: Taking the derivative with respect to time of P (t) and solving for µ gives us:

µ =
˙P (t)

P (t)− P ∗
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meaning that µ is the ratio between the rate of change and the difference between the current price
and the equilibrium price, thus determining the speed of convergence of the system.

Qualitative solution: If instead we use a phase diagram, we get the following figure that in-
dicates that the system is stable since µ < 0

Figure 4: Phase diagram of price

1.5 Linear approximations
Since we have only learned how to solve linear FODEs, we can potentially deal with non linear
FODEs by finding their linear approximation using a first order Taylor Series approximation.
If f(x) is the function we want to approximate around a, simply use f(a) + f ′(a)(x− a)

1.6 Growth rates
We are often interested in the growth rate of a variable which is given by ŷ(t) = ẏ(t)

y(t) . We can
find this by taking the derivative with respect to time of the log of the variable:

∂lny(t)

∂t
=

1

y(t)
∗ ∂y(t)

∂t
=
ẏ(t)

y(t)
= ŷ(t)

As for the growth rates of variables that are the combination of other variables, we can use the
following formulas:

y(t) = x(t)z(t) =⇒ ŷ(t) = x̂(t) + ẑ(t)

y(t) =
x(t)

z(t)
= x̂(t)− ẑ(t)

The proofs are straightforward applications of the product/quotient rule respectively

2 Introduction
In Macroeconomics, we try to model the complex system that is the world economy. To make the
process manageable, we make simplifying assumptions that reduce the model to an understand-
able complexity. Ideally, we want our assumptions to take basis in empirical evidence and to focus
on what is important and not unimportant details. It is important to balance the complexity of
the model with its realism

Our models will generally try to focus on a single aspect of the economy, taking other factors
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as exogenous (outside the scope of the model). The goal of the model is to then determine how
the endogenous aspects of the model react to exogenous changes.

Relative to hard sciences like physics, economics cannot make sure predictions since we are dealing
with humans who are necessarily very complex and hard to predict at times. Studying something
that is not only alive but also intelligent makes our task that much harder. In addition, we cannot
perform experiments for the vast majority of aspects of the economy we’d like to predict and thus
we must rely on correlational data most of the time.

Macroeconomics has 2 main areas of study. The first, growth, is the study of long term changes
in the economy. The second, cycles, is the study of short term fluctuations in the economy.

2.1 Demand and Supply
We begin by noting that GDP is the value of production or equivalently the sum of all income
generated. Value of production is generated by the supply of goods while income is determined by
the demand for those goods. Thus, both can affect GDP. Does that mean that supply or demand
changes are behind changes in GDP?

In the long run, it is believed that supply (and thus the constant growth of our capacity to
produce) leads to GDP growth. This phenomenon is put forth explicitly by Say’s law which
states that supply creates its own demand. We thus say that in the long run, GDP is supply
determined.

Nonetheless, there are short term fluctuations in GDP. According to the classical school of thought,
these changes are due to supply shocks such as bad weather. On the other hand, according to the
Keynesian school, short term drops are due to firms expecting a drop in demand and decreasing
production accordingly, meaning that output would be demand determined.

2.2 Models we will study
We will study both a model of economic growth as well as a classical model. The classical model
makes the following assumptions:

• Agents are atomistic: No single actor can influence prices.

• Agents are rational: They know what they want and act in their own interest.

• Markets are complete: Participants can insure themselves against contingency.

• Perfect information: All agents have access to perfect information.

• There are no external effects/transaction costs.

• Prices are flexible: Can adjust instantly to changes in demand/supply.

• Markets are perfectly competitive: Outcomes are Pareto efficient

A consequence of this model is that money is neutral. This means that real variables are
independent of nominal factors such as prices and inflation. For example, doubling money supply
would just mean that everything would cost twice as much.

3 Measuring the Economy
Data is essential for economics, allowing the development of theories, the testing of predictions
and the guiding of policy. Luckily, a lot of the data that is particularly relevant to economists is
readily available such as prices over time and market transactions. To make good use of this data,
National Income accounting allows for a standardized process of aggregating output that gives
us a single measure of overall economic activity, allowing us to make comparisons across countries
and time. To do so, we must differentiate between real (expressed in terms of goods) and nominal
(expressed in terms of money) variables.
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3.1 GDP
Gross Domestic Product, GDP (Y) is a measure of the market value of all final goods
produced in a country in a given year. There are three approaches to measuring it:

• Value-added: We want to sum the value of all final goods/services produced in the econ-
omy. To do so, we add up the value of all goods produced in the economy and subtract
intermediate goods (goods used to produce other goods). Make sure to:

– Goods that are produced but not sold are still considered (as if the firm purchased them)

– Only count production that occurred this year (if the company sells the unsold goods
next year, it doesn’t count)

– Government services are valued at production cost

– Wages are not considered since they are in a sense intermediate goods used to produce
final goods.

• Expenditure: We want to sum the total purchases of final goods/services. Calculated
using Y = C + I + G + NX (consumption, investment, government expenditures and net
exports respectively)

– Investment goods are only final goods purchased by firms that will be used in the long
term to produce other goods capital

– Purchases of newly built houses are investments while rent is considered consumption

– Capital goods bought to replace those affected by depreciation are included in invest-
ment. Gross measures included depreciation while net measures don’t.

– Increases in inventories are considered as investment

• Income: We want to sum the total income generated in the production of goods/services
in the economy. We add up wages and investment income (before taxes, interest payments
but after depreciation).

– People who own their own houses are considered as getting an income equivalent to
what it would cost to rent their house. This is to avoid only counting housing services
that are actually rented.

– Transfer payments such as subsidies, interest payments and welfare are not included
(just reallocation of income from taxes).

All methods yield almost exactly the same results.

Gross National Product (GNP): As opposed to GDP, GNP also includes the value of pro-
duction of Canadian firms in other countries.

3.2 Nominal vs Real GDP
We use prices to determine the market value of goods/services produced. However, if we want to
compare GDP across time, prices can vary as well as quantities produced and thus two equiva-
lently valued levels of production will differ due to inflation. Ideally, we want to measure changes
in quantities produced.

This is done by calculating real GDP which uses constant prices (prices of a base year). We
simply multiply the quantities of the current year by the prices of that base year. Thus, in doing
so, we make sure that differences are solely due to changes in production quantities.

Finally, to deal with the change of quality of goods over time (ex: computers), we use hedo-
nic pricing (the systematic valuation of how much consumers value certain features such as an
increase of 1 GHz in processing power).
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3.3 Flaws of GDP
We often assume that GDP is also a good indicator of quality of life and not just economic
activity. However, it does not take into account:

• Unofficial transactions such as the black market.

• The depletion of natural resources for production (should be counted as depreciation).

• The levels of pollution/crime.

• Inequality, education or health

3.4 Price level and Inflation
There are two ways we measure the overall price level of an economy.

GDP Deflator: Since nominal GDP uses current prices and the real GDP uses base year prices,
we can take their ratio to determine how much prices have changed since the base year. We thus
define the deflator as:

Deflator =
Nominal

Real
∗ 100

Consumer Price Index (CPI): Measures the changes in prices of goods and services pur-
chased by consumers. It is calculated by constructing a basket that represents what on average
a Canadian household consumes. The price of the basket is calculated for the base year and then
calculated again every year whereas the CPI is given by:

CPI =
currentbasket

basebasket
∗ 100

It is the best measure for computing the cost of living of an average Canadian. An equivalent
measure exists for producers PPI.

As for inflation, it is defined as the growth rate of the average level of prices (P̂ ). We can
compute it using either the CPI or the deflator with the following formula:

inflation =
new − old

old
∗ 100

As usual, there are flaws with these measures of price levels. The CPI does not take into account
changes in buying habits which arise when one good becomes more expensive, making con-
sumers switch to a less expensive alternative. Additionally, they do not track changes in quality
or the introduction of new goods (both of these produce an upwards bias on inflation).

3.5 Nominal/Real Interest Rates
Interest rates can be considered as the price of time (the price to pay to have something today
rather than tomorrow). Here we differentiate between the nominal interest rate denoted i(t)
which is the price at which you can borrow money now to pay back in the future and the real
interest rate denoted r(t) which is the price at which purchasing power/goods can be borrowed
to be paid back in the future. Both of these measures are related to the inflation rate.

The amount of goods we can buy today is given by 1
Pt

and the amount of goods we’ll need
to return in a year is given by 1+i

Pt+1
where the numerator is the amount of money you need to

return and the denominator is the price in the next period. Thus, the real interest rate is given by
the ratio of the two:

1 + r =

1+i
Pt+1

1
Pt

=
1 + i

1 + P̂
=⇒ r ≈ 1− P̂

which is the Fisher equation. Since we tend to assume that social impatience or how much
people would rather have goods today than tomorrow is relatively constant (i.e. the real interest
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rate is relatively constant). Then changes in the nominal interest rate usually arise from changes
in the inflation rate. While the rate charged by the bank is the nominal interest rate, it is the real
interest rate which is relevant for expenditure decisions. In general, different types of interest rates
(government bonds, corporate bonds, etc.) are closely correlated.

3.6 Unemployment
Unemployment is accounted for in the following manner. Let L,N,U and u bet the labor force,
the number of employed people, the number of unemployed people and the unemployment rate
respectively. We consider someone unemployed if they have no job, want to work and are actively
looking for a job. The labor force is equal to the sum of the unemployed and the employed. The
unemployment rate is the number of employed over the labor force:

L = U + E, u =
U

L

Types of Unemployment

• Frictional: Unemployment arising from the process of finding and changing jobs. It is
normal and healthy to have some amount of frictional unemployment

• Structural: Unemployment arising from long term economic changes in industries leading
to whole sectors becoming unemployed.

• Cyclical: Unemployment arising from changes in the business cycle (recessions).

3.7 International Trade
We can divide a country’s transactions with the rest of the world into 2 components: the trade
account balance and the capital account balance.

The trade account balance is simply net exports (exports - imports). If the balance of the
account is positive, there is a trade surplus, otherwise it is a trade deficit.

The capital account balance is the difference between the sale of Canadian assets (capital in-
flows) and the purchase of assets from the rest of the world (capital outflows). If it is positive,
Canada is borrowing (selling more than it is buying) and if it is negative Canada is lending.

Combining these two accounts gives us the balance of payments which is equal to the sum
of both accounts and must be zero. This means that if a country has a trade surplus, it must be
buying more assets than it is selling and if it has a trade deficit it is selling more assets than it is
buying (to finance its imports).

Being open on financial markets allows countries to run surpluses and deficits. Nonetheless, the
vast majority of international transactions are related to assets and not necessarily goods.

3.7.1 Prices

When considering an open economy, we must also consider the nominal exchange rate (e)
which is the price of foreign currency relative to domestic currency. Increases in this exchange rate
indicate either a depreciation of the domestic currency or an appreciation of the foreign currency).

We must also consider the price level of foreign countries relative to our own. This information is
given by the real exchange rate (ε) which is calculated using:

ε = e
P∗
P

=
CAD

EUR
∗ EUR/EUgood
CAD/CAgood

=
CAgood

EUgood

where P∗ is the foreign price level. An increase of the real exchange rate indicates that foreign
goods are becoming less expensive relative to domestic goods.
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3.7.2 The equilibrium nominal exchange rate

The nominal exchange rate is determined by the supply and demand of goods and the correct level
can be calculated in 2 ways.

The first one involves the trade account and is based on the non-arbitrage condition for
goods which states that the price of a Canadian good should be equal to the price of that same
good in the US multiplied by the exchange rate:

PCA = PUS ∗ e

If this condition is not met it is then theoretically possible to perform "arbitrage" by either buying
the good in Canada, selling it for USD and then converting the USD to CAD or buy the good in
the US, sell it in Canada and get more USD back depending on the direction of the inequality.

While there are barriers to this such as import fees and transportation fees, the general notion
remains that if PCA < PUS ∗ e, then there will be an increase in demand for CAD which will
increase the exchange rate and bring it closer to equilibrium and vice versa.

If we log differentiate both sides of the equation to examine the growth rate of both sides, we
get:

P̂CA = P̂US + ê ⇐⇒ ê = P̂CA − P̂US
Meaning that if Canadian inflation is higher than US inflation, then the Canadian dollar will de-
preciate.

The second method involves the capital account and is based on uncovered interest-rate
parity which states that the expected rates of return in 2 countries, expressed in a common
currency should be the same. If not, investors will buy assets in the country with the higher
expected return.

iCA = iUS + E[ê] ⇐⇒ E[ê] = iCA − iUS
If the interest rate in Canada is higher, then investors expect the Canadian dollar to depreciate.

3.8 The saving-investment identity
If we use the expenditure approach of GDP we have GDP as:

Y = C + I +G+ (X −M)

We now consider the notion of disposable income which is simply income after taxes. Since
household income is equal to nation product (all income from production goes to households
before taxes), we have that Yd = Y −T . Households can then either consume (C) or save (S) their
income which gives us the following identity:

Yd = Y − T = C + S =⇒ Y = C + S + T

Plugging back into the expenditure equation gives us:

C + S + T = C + I +G+ (X −M) =⇒ S + (T −G)︸ ︷︷ ︸
Public Saving︸ ︷︷ ︸

Domestic Savings

+ (M −X)︸ ︷︷ ︸
Foreign Saving

= I

Which implies that total savings are equal to investment. The identity can be used to analyze
trade deficits. When domestic saving decreases relative to investment, then the balance must be
made up by trade deficits (foreign savings). Similarly, when governments run deficits while house-
hold savings/total investment remain constant, then foreign savings and thus the trade deficit will
increase to pay for the government deficit.

The only way to not increase the trade deficit while running a government deficit is to let in-
vestment fall.
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4 Growth
Having a model for economic growth is essential for allowing us to understand the economic evo-
lution of various countries and the discrepancies that exist between them.

4.1 Comparisons between countries
To make meaningful comparisons between countries, We need to express both their GDPs in a
common currency and then make adjustments based on their relative price levels. The general
formula to make the GDP of country 2 comparable to the GDP of country 1 is given by (where
both are already in per capita terms):

GDP2 ∗ e ∗
P1

P2

where e is the exchange rate from country 2 dollars to country 1 dollars. This adjustment is re-
ferred to as Purchasing Power Parity Adjusted.

Due to the compounding effects of growth, small changes in growth rates lead to large dif-
ferences in per capita outcome over time. In fact, these effects tend to largely outweigh small
variations that occur due to business cycles (e.g. an economy that goes through a recession will
still have a significantly higher per capita GDP than it did 50 years ago assuming it had a decent
growth rate during that period).

Additionally, GDP per capita is strongly correlated with multiple measures of well-being
such as life expectancy, access to water as well as reductions in infant mortality, malnutrition and
poverty rates. The causal effects likely go both ways as healthier people are more productive also.

Finally, even with growth is sometimes accompanied by increasing inequality, there is strong
evidence that suggests that it makes everyone better off and is one of the best ways of reducing
poverty

4.2 Production Functions
Instead of having a separate production function for each firm, in Macro we define an aggregate
production function that includes all firms and produces a composite good (GDP). To produce
GDP, we assume only 2 inputs are needed: capital (K) and labor (N) with both inputs being
owned by households and thus the production function being given by:

Y = F (K,N)

Properties of the production function: Here are the properties that we want our production
function to have:

• Increasing input will always increase output. This implies that our production function
increases monotonically.

• If we hold one input constant while increasing the others, the additional amount of output
produced diminishes. This means that there are diminishing marginal products for labor
and capital. While the first property implies that the marginal product is always positive,
it is also always decreasing.

• Doubling labor and capital will double output. This property implies constant returns to
scale or mathematically F (cK, cN) = cF (K,N).

Combining these properties gives us that the two inputs are complementary in production since
increasing one increases the marginal product of the other. Additionally, the size of firms is
irrelevant due to constant returns to scale. We can then use a representative firm which we
consider as competitive meaning that it cannot influence prices.
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Additionally, constant returns to scale imply that the production function is homogeneous
of degree one (FK(K,N) = FK(λK, λN),∀k > 1). Thus, Euler’s theorem tells us that:

Y = FK ∗K + FN ∗N

where FK and FN are their respective marginal products. Under the assumption of competitive-
ness, each input is paid their marginal product and thus all of output is divided into payments
to labor and capital (there are K units of labor paid their marginal product and similarly for labor).

Cobb-Douglas: No Economics course would be complete without the use of a Cobb-Douglas
production function and thus it will be the one we are using:

Y = KαN1−α

where α denotes the importance of capital and (1− α) the importance of labor. If we derive their
respective marginal products we get:

MPN = (1− α)(
K

N
)α = (1− α)

Y

N

MPK = α(
N

K
)1−α = α

Y

K

Both of these marginal products are positive which satisfies the condition that production function
are increasing in each input. Additionally, if we take the partial derivative of MPN relative
to labor once again we get −α(1 − α)KαN−α−1 < 0 which implies that there are diminishing
marginal products as we increase labor while keeping capital constant (respects property 2).

Finally, Cobb-Douglas respects constant returns to scale (just plug in an arbitrary constant to
check) and taking the partial derivative relative to labor then capital gives α(1−α)kα−1nalpha > 0
meaning that the factors are complementary (increasing one, increases the marginal product of
the other). We have thus found a production function that respects all properties we wanted.

4.3 Kaldor’s Stylized Facts
First we establish the following notation:

• Π: Aggregate accounting profits (payments to capital)

• W : Aggregate wages (payments to labor)

• r: Return to capital (how much each unit of capital earns)

• w: Wage rate (wage per unit of labor)

• n: Growth rate of population/labor force (assumed to be roughly constant and positive.

We thus have the following relations:

w =
W

N
, r =

Π

K

Since Y is aggregate production which, when calculated using the income method is simply the
sum of income from wages and income from capital, we have that Y = W + Π. We can then find
their respective shares of total income as:

• Capital income share: Share of income that goes to labor W
Y

• Labor income share: Share of income that goes to capital Π
Y

Finally, investment is simply the rate of change of capital and thus K̇ = I and thus the saving
rate (equivalent to the investment rate) is simply s = K̇

Y .

We can now state Kaldor’s stylized facts which are regularities observed when examining economies
over large periods of times.
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1. Per capita output grows at a relatively constant, positive rate. Ẏi >= c > 0.

2. The ratio between capital and output does not have a trend. ˆ(KiYi ) = 0

3. The return to capital shows no trend. r̂ = 0

4. Income per capita and growth rates vary tremendously from country to country.

Consequences of stylized facts: From Kaldor’s stylized facts, we can derive the following
properties:

1. From 2. and 3., we have that K̂i must be roughly equal to Ŷi for the ratio not to change and
thus K̂i = c > 0

2. Since K̂ = K̂i + n, both of which are constant, K̂ = c > 0

3. K̂ = I
K = I

Y
Y
K . Since Y

K is constant by 2. and we have just shown K̂ is constant, then I
Y = s

must also be constant

4. r = Π
K = Π

Y
Y
K . Since Y

K and r are constant, we have that Π
K is also constant (the KIS is

constant).

5. Since the KIS is constant and LIS is 1-KIS, we have that the LIS is constant.

6. w = W
N = W

Y
Y
N =⇒ ŵ = 0 + ˆ( YN ) = Ŷi > 0. Thus wage grows at a positive, stable rate.

With this, we are now ready to model growth. We will be using supply-side models, i.e.
models where Say’s law applies meaning that supply generates its own demand.

5 The Solow Growth Model
Capital per worker is highly correlated to GDP per worker, suggesting that understanding
the evolution of capital per worker is essential for understanding growth of income capita. The
Solow model attempts to model growth as the process of capital accumulation.

5.1 Model without technological change
We begin by describing the general structure of the model and the assumptions we make.

5.1.1 Structure of the model

Figure 5: Diagram of the relations between components of the model

Assumptions
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• Markets are competitive and households/firms take prices as given

• Only output, capital and labor are transacted

• Money is neutral and prices are flexible

– The only prices are the real interest rate and the real wage rate (expressed in units
of output)

• Say’s law holds and supply creates its own demand

• The economy is closed and we don’t consider the government

• Population growth (n) is exogenous and evolves at a constant, exponential rate.

• Capital depreciates at a constant rate δ.

Production Function: Once again we use the Cobb-Douglas production function

Market Structure: To understand the structure of the market, we need to find equations for
supply and demand of both capital and labor. Using the expenditure decomposition of national
product we have:

Y (t) = C(t) + I(t) =⇒ I(t) = Y (t)− C(t)

Then, using that consumption is simply total income times 1− s, we have:

C(t) = (1− s)Y (t) =⇒ I(t) = Y (t)− (1− s)Y (t) = sY (t)

Since the rate of change of capital is just the amount added from investment - the amount lost
from depreciation:

K̇(t) = I(t)− δK(t) = sY (t)− δK(t)

• Supply: Supply of both inputs is determined by its ability to be produced since this model
is supply-sided

– Each households supplies one unit of labor inelastically (supplied regardless of wage)
and thus labor supply is given by N(t)

– Households also own the capital that they rent to firms and its evolution is given by
sY (t)− δK(t)

• Demand: To determine the demand of firms for capital and labor, we must solve the profit
maximization problem:

max
N(t),K(t)

K(t)αN(t)1−α − w(t)N(t)− (r(t) + δ)K(t)

where we normalize the price of output to 1. Taking each partial derivative and setting them
equal to 0 yields the following first order conditions

– N(t) = (1−α
w(t) )

1
αK(t)

– K(t) = ( α
r(t)+δ )

1
1−αN(t)

Now we equate supply and demand to obtain the equilibrium wage and interest rate:

w∗ = (1− α) (K∗)
α

(N∗)
−α

r∗ + δ = α (K∗)
α−1

(N∗)
1−α

Using this information, we can draw the graph of the labor market. Under these conditions,
using Euler’s Theorem, we see that firms make no economic profit
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Figure 6: Diagram of the labor market

5.1.2 Evolution of the model

Equilibrium: Seein ghat the Solow model is dynamic, we do not have a single equilibrium but
rather a sequence of equilibria. At each period, K(t) and N(t) vary which then affect all the
other variables. Here is a summary of the equations that determine them.

N(t) = N0e
nt

K̇(t) = sY (t)− δK(t)

Y (t) = KαN1−α

C(t) = (1− s)Y (t)

w(t) = (1− α) (K∗)
α

(N∗)
−α

r + δ = α (K∗)
α−1

(N∗)
1−α

Per Capita Variables: Since our model seeks to explain per-capita changes, we rewrite some of
our variables in per capita terms:

Y = KαN1−α =

(
K

N

)α
N = NKα

i =⇒ Yi = Kα
i

Ki =
K

N
−→ K̇i =

K̇N − ṄK
N2

=
K̇

N
− nKi =

sY − δK
N

− nKi = sYi − (δ + n)Ki

w = (1− α)(K)α(N)−α = (1− α) (Ki)
α

r + δ = α(K)α−1(N)1−α = α (Ki)
α−1

Steady StateThe Solow model reaches a steady state when capital per capita is constant.
When this steady state is reached is determined by the fundamental equation of the Solow
model:

K̇i = sKα
i − (δ + n)Ki

This equation states that the rate of change of capital is simply the difference between invest-
ment and replacement investment (the amount of investment needed to maintain the same
level of capital per capita given depreciation and population growth.

We can solve this analytically by setting K̇i = 0:

K∗i = (
s

δ + n
)

1
1−α

Y ∗i = (K∗i )α = (
s

δ + n
)

α
1−α
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Thus, the results of our model indicate the savings rate and population growth are the main
factors explaining differences in per capita output.

Additionally, our model respects most of the stylized facts since the capital-income ratio and
the real interest are both constant once the steady state is reached. However, it does not match
the prediction of constant growth of income per capita.

Figure 7: Qualitative steady state of the Solow model

5.2 Model with technological change
5.2.1 Structure of the model

To allow for growth in output per capita in our model, we need to include the notion of
labor-augmenting technological progress (also known as total factor productivity) which
modifies our production function to:

Y (t) = K(t)α(A(t)N(t))1−α

What this technological progress models is the change in effective labor given by AN , meaning
that workers become more effective (can produce more with the same level of capital) as technology
improves. This new production function maintains constant returns to scale (unless we increase
technology as well).

We assume that TFP is non-rival and non-excludable which means it is pure public good.
Once it becomes available, all firms can use it without hampering the ability of other firms to use it.

We now rewrite the production function in per capita terms yielding:

Yi = Kα
i A

1−α

Which is the per capita production function we will be working with from now on.

5.2.2 Evolution of the model

Now that we’ve established the general structure of the model, we examine its evolution through
time. We have the following laws of motions:

N(t) = N0e
nt

K̇ = sY − δK

Â = g =⇒ A(t) = A0e
gt

K̇i = sYi − (δ + n)Ki = sKα
i A

1−α − (δ + n)Ki
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Figure 8: The effects of increasing technological change on the Solow model

As illustrated qualitatively, this model does not reach a steady state since TFP is constantly
increasing.

Steady State: Instead of looking at a steady state where the level of output per capita
is constant, we instead look for one where its growth rate is constant. To determine the growth
rate of output per capita, we log-differentiate it:

Ŷi = αK̂i + (1− α)Â = αK̂i + (1− α)g

For this to be a constant term,we need the growth rate of capital to be constant as well

K̇i = sYi − (δ + n)Ki =⇒ K̂i = s
Yi
Ki
− (δ + n)

which is only constant if the output/captial ratio is constant. For this ratio to be constant,
we need both the growth rate of capital and output to be the same (denote by k). If we combine
this with our initial equation on the growth rate of output, we get:

k = αk + (1− α)g =⇒ (1− α)k = (1− α)g =⇒ g = k

We call this dynamic steady state the stable growth path. This constant growth rate requires
our per capita variables to grow at the same rate as technology. By rewriting these variables in
units of effective labor, we ensure that as technology improves, they however remain constant:

y =
Yi
A
, k =

Ki

A

Our production function then becomes:
y = kα

and the law of motion of capital:
k̇i = sy − (δ + n+ g)k

Combining these two gives us the fundamental equation of the Solow model (with techno-
logical change:

k̇i = skα − (δ + n+ g)k

Solved qualitatively, we get a similar phase diagram with a similar intuition behind it. Calculating
the steady state levels of output and capital in the same manner as before yields

k∗ =

(
s

n+ δ + g

)1/1−α

y∗ =

(
s

n+ δ + g

)α/1−α
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Figure 9: The steady growth path

As for the growth rate of output along the stable growth path, it is given by g and the growth
rate of output per capita is given by n+ g.

Ultimately this model indicates that changes in TFP, savings rates or population growth
are all behind differences in income per capita.

5.2.3 Transitions

Dividing the basic equation of the model by k yields:

k̂ = skα−1 − (δ + n+ g)

which implies that low levels of capital are associated to high growth rates of capital (and thus
output). Qualitatively, it looks like so:

Figure 10: Diminishing marginal product of capital

As for analytically, we need to linearize k̇ around k∗:

k̇ ≈ [sα(k∗)α−1 − (g + n+ δ)](k − k∗) = λ(k − k∗) =⇒ k(t) = k∗ + eλt(k(0)− k∗)

where λ = [sα(k∗)α−1 − (g + n+ δ)]. We can then rewrite the eigenvalue as

λ = −(1− α)(g + n+ δ) < 0

which implies that the steady state is stable.
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While changes in key parameters of the model lead to temporary growth effects, they are not
permanent and eventually a new steady state is reached. Nonetheless, there is a permanent level
effect meaning total output is permanently higher then if there hadn’t been the change. Proper-

Figure 11: Effect of a change in savings rate

ties of the model:

• The economy will always eventually achieve a steady state (low levels of capital imply high
MPK which leads to high investment which results in increasing capital towards the steady
state). On the other hand, high levels of capital lead to low MPK which leads to low
investment which results in capital not keeping up with replacement investment.

• The further an economy is below its steady state, the fast its rate of growth is.

• There are 2 types of changes, technological changes which lead to permanent growth of growth
rates and transitional changes which only have level effects (such as policy changes).

Figure 12: Transitional dynamics

5.3 Golden Rule Level of Capital
Since consumption is a fairly accurate indicator of welfare, we consider its steady state level as well
as the level of saving that maximizes steady state consumption which is the golden rule level of
saving and is reached by setting s = α.

As for the golden rule level of capital, it is given by:

MPK = α(k)α−1 = (n+ δ + g)

or basically the marginal product of capital should be equal to the sum of population growth,
technological change and depreciation (slope of replacement investment line).
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5.4 Growth Accounting
Growth accounting is the process by which we attempt to approximate the impact of the various
inputs of our model to growth. We begin with a production function with neutral technical
change:

Y = AKαN1−α

Log differentiation gives us the growth rate:

Ŷ = Â+ αK̂ + (1− α)N̂

Since the growth rate of per capita GDP is Ŷ − N̂

Ŷi = Â+ αK̂ +−α)N̂ = Â+ αK̂i

And thus we can decompose the growth rate of per capita GDP into the growth rate of technology
and the growth rate of capital per capita. Rewriting the expression gives us the Solow residual
which is equivalent to TFP:

Â = Ŷi − αK̂i

Then, by comparing the growth rate of output to the growth rate of TFP and the growth
rate of Ki we can determine how much each contributes to growth.

We then notice that a majority of growth seems to be driven by growth in TFP. More com-
plicated models also include the impact of changes such as differences in sectoral employment
(agriculture tends to have lower output per worker than industry) or changes in education.

Ultimately, the Solow Model indicates that we cannot count on the accumulation of capi-
tal in the long term to drive growth. Instead, long term growth is driven by technological
change.
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